
CUVLE: Variable-Length Encoding on CUDA

Antonio Fuentes-Alventosa

Department of Computer

Architecture and Electronics,

University of Córdoba,

Spain

antonio.fa@gmail.com

Juan Gómez-Luna

Department of Computer

Architecture and Electronics,

University of Córdoba,

Spain

el1goluj@uco.es

José Mª González-Linares

Department of Computer

Architecture,

University of Málaga,

Spain

jgl@uma.es

Nicolás Guil

Department of Computer

Architecture,

University of Málaga,

Spain

nguil@uma.es

Abstract—Data compression is the process of representing

information in a compact form, in order to reduce the storage

requirements and, hence, communication bandwidth. It has been

one of the critical enabling technologies for the ongoing digital

multimedia revolution for decades. In the variable-length

encoding (VLE) compression method, most frequently occurring

symbols are replaced by codes with shorter lengths. As it is a

common strategy in many compression applications, efficient

parallel implementations of VLE are very desirable. In this paper

we present CUVLE, a GPU implementation of VLE on CUDA.

Our approach is on average more than 20 and 2 times faster than

the corresponding CPU serial implementation and the only

known state-of-the-art GPU implementation, respectively.

Keywords—data compression; variable-length encoding;

Huffman coding; CUDA; GPU

I. INTRODUCTION

Data compression is the science of representing the
information in a compact form [1]. It is one of the most
important topics responsible for developments in multimedia.
Our need for high definition video on the desktop or high
quality music stored in a tiny device, or even transmission of
multimedia data in real time would not have been met without
digital compression techniques. Data compression has
applications in many computer science areas, like video scene
analysis, where fast algorithms for detecting scene changes and
flashlight scenes directly on compressed video have been
proposed [4].

Variable-length encoding (VLE) [2] is a popular
compression method in which mostly used symbols are
assigned with codes of shorter length, whereas rarely used
symbols are assigned with codes of longer length. VLE is a
common strategy in many compression applications. Thus,
efficient codes for VLE are required to compute as fast as
possible all these applications.

One of the most successful trends in high performance
computing is general-purpose computation on graphics
processing units (GPGPU), thanks to programming
environments such as CUDA [9]. Hundreds of industry-leading
applications are already GPU-accelerated [10]. However, data
compression has been largely unaffected. To the best of our
knowledge, the unique existing GPGPU implementation of
VLE is PAVLE [14], presented by A. Balevic.

PAVLE uses an encoding alphabet of up to 256 symbols,
with each symbol representing one byte. Without loss of

generality, it assumes that the values and bit-lengths of the
codes are stored in a look-up table, which is cached in the on-
chip shared memory. As GPU architectures provide more
efficient support for 32-bit data types, the source and
compressed data are provided and written, respectively, in
vectors of 32-bit unsigned integers. Consecutive threads load
consecutive segments of elements from the source vector. Each
thread uses the code table for encoding the loaded segment in
its private memory and calculating the corresponding bit-
length. An intra-block scan primitive is performed to calculate
the bit-positions of the thread encodings on the basis of its bit-
lengths. The threads of a block write concurrently its encodings
in a buffer in shared memory using atomic operations to deal
with the race conditions that occur when parts of adjacent
encodings are written to the same memory location. Once the
writing is finished, the content of the buffer is copied to the
output vector at the same position of the source segment
processed by the block. Therefore, after PAVLE execution, it
is necessary to compact the content of the output vector.

In this paper we present CUVLE, a new implementation of
VLE on CUDA-enabled NVIDIA GPUs. As in the case of
PAVLE, the table with the codes is cached in shared memory
and consecutive threads of a block process consecutive source
segments. However, our approach uses the following
optimization strategies:

• Persistent blocks [11], which equals the grid size to the
maximum number of resident blocks, thereby
minimizing the number of loads of the codes table in
shared memory.

• Contiguous writing of block encodings in global
memory. Our approach writes the block encodings in
their correct positions in the output vector from the
beginning, thereby avoiding the necessity of running
any compaction algorithm.

• Direct writing of block encodings in global memory. As
CUVLE does not use an intermediate buffer in shared
memory, it saves the time to make additional
operations, avoids the appearance of bank conflicts and
saves the reserved space for the buffer.

The previous optimization techniques allowed us to
implement a solution for variable-length encoding on modern
GPGPUs which is on average more than 2 and 20 times faster
than PAVLE and the corresponding CPU serial
implementation, respectively.

The rest of the paper is organized as follows. Section II
gives background for data compression and CUDA. Section III
presents CUVLE and describes its implementation details.
Section IV shows the experimental evaluation of our algorithm
and a comparison to the CPU serial implementation and
PAVLE. Finally, the main conclusions are stated.

II. BACKGROUND

A. Data compression

Data compression is, in the context of computer science,
the science (and art) of representing the information in a
compact form [1].

The compression techniques were developed taking into
account three primary problems of computers in the early days
[2]. These are (a) limited memory, (b) costly storage capacity,
and (c) processing capability limitations. Although
developments in hardware have vastly improved computing
power, our demands for processing multimedia data have also
increased simultaneously. Our need for high definition video
on the desktop or high quality music stored in a tiny device, or
even transmission of multimedia data in real time would not
have been met without digital compression techniques. With
the emergency of computer networking and Internet, data
compression becomes essential to reduce cost and delay of
transmission.

Data compression is used in many areas of the computer
science, like the field of video scene analysis. Several rapid
algorithms [4] for detecting scene changes and flashlight
scenes directly on compressed video have been proposed.
These algorithms operate on the dc sequence which can be
readily extracted from video compressed using Motion JPEG
or MPEG without full-frame decompression. The dc images
occupy only a small fraction of the original data size while
retaining most of the essential “global” information.

Broadly, data compression can be of two types: lossless and
lossy. In lossless data compression method the original data is
reconstructed exactly from the compressed data after a reverse
process called decompression. This means that no information
is lost in the process of compression. This is opposite to lossy
data compression method. Lossless compression is used when
it is important that the original and the decompressed data have
to remain exactly identical. This is the case, for example, of
executable programs, source codes and textual documents.
Image file formats like PNG use only lossless compression,
while others like TIFF may use either lossless or lossy
methods. Lossless data compression is used in the popular ZIP
software compression tool.

Variable-length encoding (VLE) [2] is a lossless
compression method in which mostly used symbols are
assigned with codes of shorter length, whereas rarely used
symbols are assigned with codes of longer length. As it is a
common strategy in many compression applications, efficient
codes for VLE are required to compute as fast as possible all
these applications. Once the symbol character set and their
probabilities become known, the code lengths can be decided.
David Huffman created in 1951 and algorithm for
systematically generating variable length codes for a given

source [3]. For this task a binary tree is created using the
symbols as leaves according to their probabilities and paths of
those are taken as the codes. The method starts with as many
trees as there are symbols. While there is more than one tree, it
finds the two trees with the smallest total weight and combines
them into one, setting one as the left child and the other as
right. Once the tree contains all the symbols, it assigns 0’s and
1’s (left child represents ‘0’ and right child ‘1’).

B. CUDA

CUDA is a parallel computing platform and programming
model invented by NVIDIA [5]. It enables dramatic increases
in computing performance by harnessing the power of the
graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

• Provide a small set of extensions to standard
programming languages, like C, that enable a
straightforward implementation of parallel algorithms.
With CUDA C/C++, programmers can focus on the
task of parallelization of the algorithms rather than
spending time on their implementation.

• Support heterogeneous computation where applications
use both the CPU and GPU. Serial portions of
applications are run on the CPU, and parallel portions
are offloaded to the GPU. As such, CUDA can be
incrementally applied to existing applications. The CPU
and GPU are treated as separate devices that have their
own memory spaces. This configuration also allows
simultaneous computation on the CPU and GPU
without contention for memory resources.

A CUDA program invokes parallel functions called kernels
that execute across many parallel threads [6]. These threads are
organized into thread blocks and grids of thread blocks. Each
thread within a thread block executes and instance of the
kernel. Each thread also has thread and block IDs within its
thread block and grid, a program counter, registers, per-thread
private local memory, inputs, and output results.

A thread block is a set of concurrently executing threads
that can cooperate among themselves through barrier
synchronization and shared memory. A thread block has a
block ID within its grid. A grid is an array of thread blocks that
execute the same kernel, read inputs from global memory,
write results to global memory, and synchronize between
dependent kernel calls. In the CUDA parallel programming
model, each thread has a per-thread private local memory
space used for register spills, function calls, and C automatic
array variables. Each thread block has a per-block shared
memory space used for inter-thread communication, data
sharing, and result sharing in parallel algorithms. Grids of
thread blocks share results in global memory space after
kernel-wide global synchronization.

CUDA’s hierarchy of threads maps to a hierarchy of
processors on the GPU; a GPU executes one or more kernel
grids; a streaming multiprocessor (SM on Fermi / SMX on
Kepler) executes one or more thread blocks; and CUDA cores
and other execution units in the SMX execute thread
instructions. The SMX executes threads in groups of 32 threads

called warps. While programmers can generally ignore warp
execution for functional correctness and focus on programming
individual scalar threads, they can greatly improve
performance by having threads in a warp execute the same
code paths and access memory with nearby addresses.

III. CUVLE

In this section we describe CUVLE, our algorithm for
variable-length encoding on CUDA-enabled GPUs.

CUVLE uses an encoding alphabet of 256 symbols, which
are unsigned bytes (0, 1 ... 255). The variable-length codes are
provided in a table (VLET), which is implemented by two
vectors of 256 elements: one that stores the values of the codes
(VLET_val) and the other their bit-lengths (VLET_len). The
element i of each vector contains the value/bit-length of the
code assigned to the symbol i.

The source data are provided in an input vector of 32-bit
unsigned integers. Thus, every element of the vector contains 4
symbols, since these are represented with 8 bits each. The
compressed data are written in an output vector of 32-bit
unsigned integers too.

The input vector is conceptually partitioned into segments

of B × NET elements called block-inputs, where B is the
number of threads of a block and NET is an integer value. Each
block-input is processed by a block and the encoding result,
which will be referred to as block-code, is written in the output
vector. Figure 1 illustrates this inter-block mechanism.

Consecutive threads of a block process consecutive
segments of NET elements called thread-inputs. The result of
encoding a thread-input will be referred to as thread-code.
Figure 2 shows an example of this intra-block mechanism.

Figure 3 presents the CUVLE algorithm. The first action
performed by each block is caching the VLET in shared
memory. Then, while there are block-inputs to be encoded,
each block repeats the next steps: first, it gets the index of the
first available block-input; second, each thread of the block
encodes its corresponding thread-input in its private memory;
third, the block calculates the bit-positions in the output vector
of the thread-codes; finally, each thread writes its
corresponding thread-code in the output vector.

A. VLET caching

While encoding a block-input, the VLET is used
intensively for searching the values and lengths of codes in the
vectors VLET_val and VLET_len, respectively. As a thread
reads NET elements of a block-input and each element

contains 4 symbols, each thread of a warp executes 4 × NET
concurrent accesses to each one of the two VLET vectors.
These are random accesses, as they depend on the source data.
Therefore, the VLET caching is a very important requirement
to avoid bottlenecks during the algorithm execution.

In order to perform the searches as fast as possible,
CUVLE uses the fast on-chip memory on the GPU for caching
the VLET. The function cacheVLETInSharedMemory copies
(in a fully coalesced way) the vectors of global memory

h_VLET_val and h_VLET_len to the vectors of shared
memory s_VLET_val and s_VLET_len, respectively.

B. Persistent blocks

The straightforward way of choosing the execution
configuration of the kernel would be setting as many blocks as
block-inputs, so that each block processes the block-input of
the same index. However, CUVLE, in order to minimize the
number of VLET loads in shared memory, applies a different
strategy, called persistent blocks [11], which equals the grid
size to the maximum number of resident blocks (MRB).

MRB is calculated by multiplying the maximum number of
resident blocks per multiprocessor (MRBM) by the number of
multiprocessors. MRBM can be carefully calculated by taking
several parameters into consideration: the maximum number of
threads per multiprocessor, the shared memory needs per
thread block, and the register usage per thread.

Block-input 0 Block-input 1 Block-input 2 Block-input 3

Block-code 0 Block-code 1 Block-code 2 Block-code 3

Fig. 1. Example of CUVLE basic inter-block mechanism for an input

vector of 4 block-inputs and a grid of 2 blocks. The block 0

processes the block-inputs 0 and 2 and writes the corresponding

block-codes 0 and 2 in the output vector. The block 1 performs

the same actions with the block-inputs 1 and 3.

Fig. 2. Example of CUVLE basic intra-block mechanism for NET =

8. The block j processes the block-input i and writes the

corresponding block-code i in the output vector. Each thread k

of the block j encodes the thread-input k and writes the thread-

code k in the output vector.

Input vector

Output vector

Block 0 Block 1

Block-code i

Block-input i

Thread-input 0 Thread-input B - 1

 Thread 0 Thread B - 1

Thread-code

0

Thread-code

B - 1

Block j

Input

vector

Output

vector

// Declaration of arrays in shared memory for VLET caching

__shared__ uint s_VLET_val[ALPHABET_SIZE];

__shared__ uint s_VLET_len[ALPHABET_SIZE];

// Declaration of array in shared memory for storing the

// bit-lengths of the thread-codes belonging to a block-code

__shared__ uint s_lens[BLOCK_SIZE];

// VLET caching

cacheVLETInSharedMemory(s_VLET_val, s_VLET_len,

 h_VLET_val, h_VLET_len);

// Get the index of the first block-input to be encoded

uint blockinput_idx = blockIdx.x;

// While there are block-inputs to be encoded...

while (blockinput_idx < number_of_blockinputs){

 // Encode the thread-input assigned to the thread in the

 // current block-input

 uint threadcode[4 × NET];

 uint threadcode_len;

 encodeThreadInput(threadcode, threadcode_len,

 h_input, blockinput_idx,

 s_VLET_val, s_VLET_len);

 // Calculate the bit-positions of the thread-codes belonging

 // to the current block-code

 s_lens[threadIdx.x] = threadcode_len;

 uint threadcode_bitpos = calculateBitPosOfThreadCodes(s_lens);

 // Write the thread-code to the output vector

 writeThreadCode(h_output, threadcode_bitpos,

 threadcode, threadcode_len);

 // Get the index of the next block-input to be encoded

 blockinput_idx += gridDim.x;

}

Fig. 3. CUVLE algorithm.

C. Thread-input reading and encoding

A thread calls the function encodeThreadInput to encode a
thread-input in its private memory. For each of the NET
elements of a thread-input, a thread loads it from global
memory and for each of its 4 bytes, from the most significant
to the least: first, searches in the VLET the value and the bit-
length of the associated code; second, updates the array
threadcode and the variable threadcode_len with the read
values. The codes are concatenated in threadcode and the bit-
lengths accumulated in threadcode_len.

The size of threadcode is 4 × NET because a thread-code is

composed by the concatenation of 4 × NET codes and the
maximal bit-length of a code assumed by CUVLE is 32 bits
(the size of an unsigned integer).

If NET > 1, the accesses of a warp for reading a thread-
input are not coalesced, as CUDA literature [7, 8] recommends
for maximizing the performance. However, they satisfy the
principle of spatial locality because consecutive threads of a
warp read consecutive thread-inputs. Therefore, the transparent
cache hierarchy of Fermi and Kepler ensures a good
performance while reading the input vector. In Fermi
architecture, CUVLE must utilize both L1 and L2 caches to
achieve the best performance. L1 should be used because the
accesses fulfill the principle of spatial locality and its line size
(128 bytes) is larger than the one of L2 (32 bytes). In Kepler
architecture, accesses to global memory are cached only in L2
(L1 is reserved for local memory accesses) [6] but this memory

is improved, as it offers up to 2x of the bandwidth per clock
available in Fermi.

D. Calculation of the bit-positions of thread-codes in the

output vector

The function calculateBitPosOfThreadCodes calculates the
output bit-positions of the thread-codes that belong to a block-
code. It operates across all the threads of a block combining the
efficient intra-block scan algorithm of S. Sengupta et al. [12]
with the adjacent block synchronization mechanism proposed
by S.Yan et al. [13].

The function utilizes an intermediate array I in global
memory, with as many elements as number of block-inputs (or,
equivalently, block-codes). This vector is used for storing the
bit-positions of the block-codes in the output vector with the
exception of the first block-code, whose bit-position is zero.

The bit-position of a thread-code in the output vector (pos-
tc-out) is calculated using the following expression:

pos-tc-out = pos-tc-bc + pos-bc-out

where pos-tc-bc and pos-bc-out are the bit-positions of the
thread-code in its block-code and of the block-code in the
output vector, respectively.

• The values of the parameter pos-tc-bc for the thread-
codes of a block-code are calculated applying the scan
operation on the basis of their bit-lengths.

• Given a block-input j, if it is the first (j = 0) pos-bc-out
is zero. Otherwise, its value is read from I[j - 1].

Let us see how the values of I are written. At the beginning,
all its elements are initialized to zero. When the bit-length of a
block-code j is calculated (through the scan operation):

• If j = 0, the bit-length is stored in I[0].

• If j > 0, a particular thread of the block:

1. Reads continuously the element I[j - 1] until its
value is nonzero. The readings are carried out
using atomic operations to avoid getting old
cached values.

2. Adds the value read in the previous step to the
bit-length of the block-code.

3. Stores the value calculated in the previous step in
I[j].

E. Writing the thread-codes in the output vector

A thread calls the function writeThreadCode to write the
corresponding thread-code in the output vector at the bit-
position calculated in the previous step. The number of
elements of the output vector to update depends on the bit-
length and the bit-position of the thread-code. As the second to
penultimate elements are exclusively written by the thread, the
standard store operation is used for it. However, as the first and
ultimate elements are generally edited by more than one thread,
each one fits safely its specific bits using atomic OR
operations. Note that all the elements of the output vector must
be initialized to zero.

As a thread-code is composed by a sequence of 4 × NET
codes and the minimum bit-length of a code is 1 bit, if NET ≥
8, the minimum bit-length of a thread-code is ≥ 32 bits, the size
of the elements of the output vector. This fact has the following
implications:

• The first element of the output vector updated by each
thread is different.

• Each element of the output vector is updated at most by
two threads of the grid (the last bits of the first thread-
code and the first bits of the second thread-code).

Assuming NET ≥ 8, let us analyze when position conflicts
(i.e., two threads colliding while accessing the same memory
location) may appear between two consecutive threads t1 and
t2, whose thread-codes are tc1 and tc2, respectively, and the
need for atomic operations:

• The threads belong to the same warp. As a warp is a
SIMD unit, it executes in lock-step, so it is not possible
a collision because t1 and t2 do not write the second
element of tc1 and tc2, respectively, until they have
written the first element, which means that when t1 is
going to write the last element of tc1, t2 has already
written the first element of tc2 previously.

• The threads belong to different warps. In this case,
there may be collisions, as warps execute independently
and in a non-predictable order. However, the
probability of collision is low, given that warp
schedulers typically alternate warps in a round-robin
fashion.

Taking into account our previous analysis let us see
(assuming NET ≥ 8) how a thread can write its thread-code
using only two atomic operations per warp and minimizing the
number of OR operations (atomic or not):

• First element of the output vector to update. If the
thread is the first of a warp, it writes the corresponding
bits performing an atomic OR operation with the value
stored in the target position, preventing, in this way,
collisions with other thread that updates the same
element. Hereafter, we will call the second thread the
colliding thread. Otherwise, it directly stores the
corresponding value in the target position because the
colliding thread (the immediately preceding) belongs to
the same warp and so, as we have just seen, they cannot
collide. For example, in Figure 2, thread 0 fits the bits
of the first output element using an atomic OR
operation. In contrast, threads 1 to 31 directly write the
bits of their first target positions.

• Second to penultimate elements. Their contents are
directly stored, as they are exclusively updated by the
thread. In Figure 2, threads 0 and B - 1 directly write
the values of the second to fourth and of the second to
third target elements, respectively.

• Last element. If the thread is the last of a warp, it
updates the target position performing an atomic OR
operation for preventing collisions. Otherwise, it
executes a non-atomic OR operation because the

colliding thread (the immediately subsequent) belongs
to the same warp and they cannot collide. In Figure 2,
thread B - 1 fits the bits of the last output element using
an atomic OR operation. In contrast, the 31 immediately
preceding threads execute a non-atomic OR operation
to fit the bits of their last target positions.

In order to eliminate the warp divergences caused by the
evaluation of conditions in the updating of the first and last
target positions, CUVLE simplifies the writing of a thread-
code as follows:

• First and last target positions: performing an atomic
OR operation.

• Second to penultimate target positions: directly storing
their values.

IV. EXPERIMENTAL EVALUATION

We evaluated CUVLE and compared it to PAVLE and a
CPU serial implementation, which will be referred to as CPU-
VLE in this section. The PAVLE and CPU-VLE
implementations were obtained from the source code provided
by A. Balevic [15]. CPU-VLE, as our approach, assumes a
maximal code bit-length of 32 bits.

Our test machine had a 2.67Ghz Intel Core i7 920 CPU and
12 GB of RAM. The GPUs that we utilized were a GeForce
GT 640 2GB GDDR5 (Kepler architecture with compute
capability 3.5) and a GeForce GTX 550 Ti (Fermi architecture
with compute capability 2.1).

We used randomly-generated test files with values of
entropy between 0 and 8 bits per symbol and sizes between
0.25 and 256 MB. The variable-length codes were generated
using the Huffman method for the construction of minimum
redundancy codes [3].

Tables I and II show the minimum, maximum and average
values of CUVLE speedup with respect to the other algorithms
using the Kepler and Fermi GPUs, respectively. In the case of
PAVLE, we distinguish between the kernel execution time and
the total encoding time. The latter takes into account the extra
processing of compaction required on the output vector after
PAVLE kernel completion. As it can be seen, the speedups
were very similar in both architectures.

As expected, the best values of performance were obtained
for NET >= 8, condition that guarantees the next points:

• There are not intra-warp position conflicts.

• The maximum degree of inter-warp position conflict is
2.

• The thread-codes can be written minimizing the number
of OR operations.

More precisely, the best results were obtained using NET =
8 or NET = 16 for files with small sizes (less than or equal to
1MB) and NET = 16 for the rest. Therefore, the value NET =
16 always guarantees an efficient encoding.

Experimental evaluation showed that CUVLE is more than
two times faster than PAVLE. The main reasons are the next:

TABLE I. CUVLE SPEEDUP USING THE KEPLER CARD.

Algorithm Minimum Maximum Average

CPU-VLE 22.3 29.2 27.1

PAVLE (kernel) 1.6 2.2 2.0

PAVLE (total) 2.5 4.2 2.7

TABLE II. CUVLE SPEEDUP USING THE FERMI CARD.

Algorithm Minimum Maximum Average

CPU-VLE 20.3 23.6 21.8

PAVLE (kernel) 1.7 1.9 1.8

PAVLE (total) 2.0 3.9 2.5

a) Contiguous writing of block-codes in global memory.
PAVLE writes the block-codes in the output vector at the same
positions of their corresponding block-inputs in the input
vector. Consequently, the block-codes are not stored
contiguously and, after completion of PAVLE, it is necessary
the execution of a second algorithm to compact the content of
the output vector using the bit-lengths of the block-codes,
which are previously stored in global memory by PAVLE.
CUVLE writes the block-codes in their correct positions in the
output vector from the beginning, which avoids the necessity
of running any compaction algorithm and, consequently,
entails a great saving of time.

b) Direct writing of block-codes in global memory.
PAVLE, first, writes a block-code to a temporary buffer in
shared memory and, then, copies the content of the buffer to
the output vector. As our approach writes directly a block-code
in global memory:

• Saves the time to make additional operations of writing
and reading in a buffer in shared memory, avoiding the
corresponding data-dependent appearance of bank
conflicts.

• Saves the required space for the temporary buffer,
increasing the occupancy, which is the ratio between
the number of active warps within a streaming
multiprocessor and the maximum number of active
warps.

• Benefits on the high performance of global atomic
operations on modern GPGPUs architectures [6].

c) Persistent blocks. As CUVLE applies the persistent
blocks strategy, the grid has many fewer blocks than that of
PAVLE. So, the number of VLET copies from global to shared
memory is much lower.

V. CONCLUSIONS

This work has presented CUVLE, a highly optimized
approach to VLE on GPU. Our algorithm uses several
optimization techniques that outperform the throughput of
PAVLE, the unique parallel previous GPGPU implementation,
to the best of our knowledge. CUVLE applies the persistent
blocks strategy to carry out a very small number of VLET
copies in shared memory. Our approach writes the codes in
their correct positions from the beginning, which avoids the
necessity of running any compaction algorithm. Moreover, the
codes are written directly in global memory, as the
performance of global atomic operations is high on modern
GPGPUs architectures. Thus, the occupancy is increased by
saving the reserved space for a write buffer in shared memory.

The experimental evaluation showed that CUVLE is a good
and suitable alternative for variable-length encoding on modern
GPGPUs, as it is more than 20 and 2 times faster than the
corresponding CPU serial implementation and PAVLE,
respectively.

ACKNOWLEDGMENT

We thank NVIDIA for a hardware donation to the
University of Córdoba under CUDA Teaching Center 2014-
2015 Awards, and the Junta de Andalucía of Spain for financial
support (TIC-1692).

REFERENCES

[1] Ida Mengyi Pu, “Fundamental Data Compression”, Butterworth-
Heinemann, 2005, pp. 1-6.

[2] Banerji, “Multimedia Technologies”, Tata McGraw-Hill Education,
2010, pp. 59-73.

[3] David A. Huffman. "A method for the construction of minimum-
redundancy codes". Proceedings of the Institute of Radio Engineers,
40(9): 1098–1101, September 1952.

[4] Boon-Lock Yeo, "Bede Liu: Rapid scene analysis on compressed
video", 1995, IEEE Transactions on Circuits and Systems for Video
Technology, 5(6), pp. 533-544.

[5] NVIDIA: CUDA Getting Started Guide for Linux (2013).
http://docs.nvidia.com/cuda/pdf/CUDA_Getting_Started_Linux.pdf

[6] NVIDIA: Kepler compute architecture. White paper (2012).
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf

[7] NVIDIA: CUDA C Programming Guide 5.5 (2013).
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[8] NVIDIA: CUDA C Best Practices Guide 5.5 (2013).
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

[9] NVIDIA: CUDA Zone (2014). https://developer.nvidia.com/cuda-
zone

[10] NVIDIA: GPU-Accelerated Applications (2014).
http://www.nvidia.com/content/tesla/pdf/gpu-apps-catalog-mar14-
digital-fnl-hr.pdf

[11] Martín, P.J., Ayuso, L.F., Torres, R., Gavilanes, A.,"Algorithmic
strategies for optimizing the parallel reduction primitive in CUDA",
2012, Proceedings of the 2012 International Conference on High
Performance Computing and Simulation, HPCS 2012, art. no. 6266966,
pp. 511-519.

[12] S. Sengupta, M. Harris, and M. Garland, "Efficient parallel scan
algorithms for GPUs", NVIDIA, Santa Clara, CA, Tech. Rep. NVR-
2008-003, no. 1, pp. 1-17, 2008.

[13] Yan, S., Long, G., Zhang, Y.,"StreamScan: Fast scan algorithms for
GPUs without global barrier synchronization",2013, ACM SIGPLAN
Notices, 48 (8), pp. 229-238.

[14] Balevic, A.,"Parallel variable-length encoding on GPGPUs", 2010,
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6043, pp.
26-35.

[15] Balevic, A., Subversion Repository ana-b-pavle. https://xp-
dev.com/svn/ana-b-pavle/

