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Abstract—Data compression is the process of representing 

information in a compact form, in order to reduce the storage 

requirements and, hence, communication bandwidth. It has been 

one of the critical enabling technologies for the ongoing digital 

multimedia revolution for decades. In the variable-length 

encoding (VLE) compression method, most frequently occurring 

symbols are replaced by codes with shorter lengths. As it is a 

common strategy in many compression applications, efficient 

parallel implementations of VLE are very desirable. In this paper 

we present CUVLE, a GPU implementation of VLE on CUDA. 

Our approach is on average more than 20 and 2 times faster than 

the corresponding CPU serial implementation and the only 

known state-of-the-art GPU implementation, respectively. 

Keywords—data compression; variable-length encoding; 

Huffman coding; CUDA; GPU 

I. INTRODUCTION 

Data compression is the science of representing the 
information in a compact form [1]. It is one of the most 
important topics responsible for developments in multimedia. 
Our need for high definition video on the desktop or high 
quality music stored in a tiny device, or even transmission of 
multimedia data in real time would not have been met without 
digital compression techniques. Data compression has 
applications in many computer science areas, like video scene 
analysis, where fast algorithms for detecting scene changes and 
flashlight scenes directly on compressed video have been 
proposed [4]. 

Variable-length encoding (VLE) [2] is a popular 
compression method in which mostly used symbols are 
assigned with codes of shorter length, whereas rarely used 
symbols are assigned with codes of longer length. VLE is a 
common strategy in many compression applications. Thus, 
efficient codes for VLE are required to compute as fast as 
possible all these applications. 

One of the most successful trends in high performance 
computing is general-purpose computation on graphics 
processing units (GPGPU), thanks to programming 
environments such as CUDA [9]. Hundreds of industry-leading 
applications are already GPU-accelerated [10]. However, data 
compression has been largely unaffected. To the best of our 
knowledge, the unique existing GPGPU implementation of 
VLE is PAVLE [14], presented by A. Balevic.  

PAVLE uses an encoding alphabet of up to 256 symbols, 
with each symbol representing one byte. Without loss of 

generality, it assumes that the values and bit-lengths of the 
codes are stored in a look-up table, which is cached in the on-
chip shared memory. As GPU architectures provide more 
efficient support for 32-bit data types, the source and 
compressed data are provided and written, respectively, in 
vectors of 32-bit unsigned integers. Consecutive threads load 
consecutive segments of elements from the source vector. Each 
thread uses the code table for encoding the loaded segment in 
its private memory and calculating the corresponding bit-
length. An intra-block scan primitive is performed to calculate 
the bit-positions of the thread encodings on the basis of its bit-
lengths. The threads of a block write concurrently its encodings 
in a buffer in shared memory using atomic operations to deal 
with the race conditions that occur when parts of adjacent 
encodings are written to the same memory location. Once the 
writing is finished, the content of the buffer is copied to the 
output vector at the same position of the source segment 
processed by the block. Therefore, after PAVLE execution, it 
is necessary to compact the content of the output vector.  

In this paper we present CUVLE, a new implementation of 
VLE on CUDA-enabled NVIDIA GPUs. As in the case of 
PAVLE, the table with the codes is cached in shared memory 
and consecutive threads of a block process consecutive source 
segments. However, our approach uses the following 
optimization strategies: 

• Persistent blocks [11], which equals the grid size to the 
maximum number of resident blocks, thereby 
minimizing the number of loads of the codes table in 
shared memory. 

• Contiguous writing of block encodings in global 
memory. Our approach writes the block encodings in 
their correct positions in the output vector from the 
beginning, thereby avoiding the necessity of running 
any compaction algorithm. 

• Direct writing of block encodings in global memory. As 
CUVLE does not use an intermediate buffer in shared 
memory, it saves the time to make additional 
operations, avoids the appearance of bank conflicts and 
saves the reserved space for the buffer. 

The previous optimization techniques allowed us to 
implement a solution for variable-length encoding on modern 
GPGPUs which is on average more than 2 and 20 times faster 
than PAVLE and the corresponding CPU serial 
implementation, respectively. 



The rest of the paper is organized as follows. Section II 
gives background for data compression and CUDA. Section III 
presents CUVLE and describes its implementation details. 
Section IV shows the experimental evaluation of our algorithm 
and a comparison to the CPU serial implementation and 
PAVLE. Finally, the main conclusions are stated. 

II. BACKGROUND 

A. Data compression 

Data compression is, in the context of computer science, 
the science (and art) of representing the information in a 
compact form [1].  

The compression techniques were developed taking into 
account three primary problems of computers in the early days 
[2]. These are (a) limited memory, (b) costly storage capacity, 
and (c) processing capability limitations. Although 
developments in hardware have vastly improved computing 
power, our demands for processing multimedia data have also 
increased simultaneously. Our need for high definition video 
on the desktop or high quality music stored in a tiny device, or 
even transmission of multimedia data in real time would not 
have been met without digital compression techniques. With 
the emergency of computer networking and Internet, data 
compression becomes essential to reduce cost and delay of 
transmission. 

Data compression is used in many areas of the computer 
science, like the field of video scene analysis. Several rapid 
algorithms [4] for detecting scene changes and flashlight 
scenes directly on compressed video have been proposed. 
These algorithms operate on the dc sequence which can be 
readily extracted from video compressed using Motion JPEG 
or MPEG without full-frame decompression. The dc images 
occupy only a small fraction of the original data size while 
retaining most of the essential “global” information. 

Broadly, data compression can be of two types: lossless and 
lossy. In lossless data compression method the original data is 
reconstructed exactly from the compressed data after a reverse 
process called decompression. This means that no information 
is lost in the process of compression. This is opposite to lossy 
data compression method. Lossless compression is used when 
it is important that the original and the decompressed data have 
to remain exactly identical. This is the case, for example, of 
executable programs, source codes and textual documents. 
Image file formats like PNG use only lossless compression, 
while others like TIFF may use either lossless or lossy 
methods. Lossless data compression is used in the popular ZIP 
software compression tool. 

Variable-length encoding (VLE) [2] is a lossless 
compression method in which mostly used symbols are 
assigned with codes of shorter length, whereas rarely used 
symbols are assigned with codes of longer length. As it is a 
common strategy in many compression applications, efficient 
codes for VLE are required to compute as fast as possible all 
these applications. Once the symbol character set and their 
probabilities become known, the code lengths can be decided. 
David Huffman created in 1951 and algorithm for 
systematically generating variable length codes for a given 

source [3]. For this task a binary tree is created using the 
symbols as leaves according to their probabilities and paths of 
those are taken as the codes. The method starts with as many 
trees as there are symbols. While there is more than one tree, it 
finds the two trees with the smallest total weight and combines 
them into one, setting one as the left child and the other as 
right. Once the tree contains all the symbols, it assigns 0’s and 
1’s (left child represents ‘0’ and right child ‘1’). 

B. CUDA 

CUDA is a parallel computing platform and programming 
model invented by NVIDIA [5]. It enables dramatic increases 
in computing performance by harnessing the power of the 
graphics processing unit (GPU).  

CUDA was developed with several design goals in mind: 

• Provide a small set of extensions to standard 
programming languages, like C, that enable a 
straightforward implementation of parallel algorithms. 
With CUDA C/C++, programmers can focus on the 
task of parallelization of the algorithms rather than 
spending time on their implementation. 

• Support heterogeneous computation where applications 
use both the CPU and GPU. Serial portions of 
applications are run on the CPU, and parallel portions 
are offloaded to the GPU. As such, CUDA can be 
incrementally applied to existing applications. The CPU 
and GPU are treated as separate devices that have their 
own memory spaces. This configuration also allows 
simultaneous computation on the CPU and GPU 
without contention for memory resources.  

A CUDA program invokes parallel functions called kernels 
that execute across many parallel threads [6]. These threads are 
organized into thread blocks and grids of thread blocks. Each 
thread within a thread block executes and instance of the 
kernel. Each thread also has thread and block IDs within its 
thread block and grid, a program counter, registers, per-thread 
private local memory, inputs, and output results.  

A thread block is a set of concurrently executing threads 
that can cooperate among themselves through barrier 
synchronization and shared memory. A thread block has a 
block ID within its grid. A grid is an array of thread blocks that 
execute the same kernel, read inputs from global memory, 
write results to global memory, and synchronize between 
dependent kernel calls. In the CUDA parallel programming 
model, each thread has a per-thread private local memory 
space used for register spills, function calls, and C automatic 
array variables. Each thread block has a per-block shared 
memory space used for inter-thread communication, data 
sharing, and result sharing in parallel algorithms. Grids of 
thread blocks share results in global memory space after 
kernel-wide global synchronization. 

CUDA’s hierarchy of threads maps to a hierarchy of 
processors on the GPU; a GPU executes one or more kernel 
grids; a streaming multiprocessor (SM on Fermi / SMX on 
Kepler) executes one or more thread blocks; and CUDA cores 
and other execution units in the SMX execute thread 
instructions. The SMX executes threads in groups of 32 threads 



called warps. While programmers can generally ignore warp 
execution for functional correctness and focus on programming 
individual scalar threads, they can greatly improve 
performance by having threads in a warp execute the same 
code paths and access memory with nearby addresses. 

III. CUVLE 

In this section we describe CUVLE, our algorithm for 
variable-length encoding on CUDA-enabled GPUs.  

CUVLE uses an encoding alphabet of 256 symbols, which 
are unsigned bytes (0, 1 ... 255). The variable-length codes are 
provided in a table (VLET), which is implemented by two 
vectors of 256 elements: one that stores the values of the codes 
(VLET_val) and the other their bit-lengths (VLET_len). The 
element i of each vector contains the value/bit-length of the 
code assigned to the symbol i. 

The source data are provided in an input vector of 32-bit 
unsigned integers. Thus, every element of the vector contains 4 
symbols, since these are represented with 8 bits each. The 
compressed data are written in an output vector of 32-bit 
unsigned integers too. 

The input vector is conceptually partitioned into segments 

of B × NET elements called block-inputs, where B is the 
number of threads of a block and NET is an integer value. Each 
block-input is processed by a block and the encoding result, 
which will be referred to as block-code, is written in the output 
vector. Figure 1 illustrates this inter-block mechanism.  

Consecutive threads of a block process consecutive 
segments of NET elements called thread-inputs. The result of 
encoding a thread-input will be referred to as thread-code. 
Figure 2 shows an example of this intra-block mechanism. 

Figure 3 presents the CUVLE algorithm. The first action 
performed by each block is caching the VLET in shared 
memory. Then, while there are block-inputs to be encoded, 
each block repeats the next steps: first, it gets the index of the 
first available block-input; second, each thread of the block 
encodes its corresponding thread-input in its private memory; 
third, the block calculates the bit-positions in the output vector 
of the thread-codes; finally, each thread writes its 
corresponding thread-code in the output vector. 

A. VLET caching 

While encoding a block-input, the VLET is used 
intensively for searching the values and lengths of codes in the 
vectors VLET_val and VLET_len, respectively. As a thread 
reads NET elements of a block-input and each element 

contains 4 symbols, each thread of a warp executes 4 × NET 
concurrent accesses to each one of the two VLET vectors. 
These are random accesses, as they depend on the source data. 
Therefore, the VLET caching is a very important requirement 
to avoid bottlenecks during the algorithm execution. 

In order to perform the searches as fast as possible, 
CUVLE uses the fast on-chip memory on the GPU for caching 
the VLET. The function cacheVLETInSharedMemory copies 
(in a fully coalesced way) the vectors of global memory 

h_VLET_val and h_VLET_len to the vectors of shared 
memory s_VLET_val and s_VLET_len, respectively. 

B. Persistent blocks 

The straightforward way of choosing the execution 
configuration of the kernel would be setting as many blocks as 
block-inputs, so that each block processes the block-input of 
the same index. However, CUVLE, in order to minimize the 
number of VLET loads in shared memory, applies a different 
strategy, called persistent blocks [11], which equals the grid 
size to the maximum number of resident blocks (MRB). 

MRB is calculated by multiplying the maximum number of 
resident blocks per multiprocessor (MRBM) by the number of 
multiprocessors. MRBM can be carefully calculated by taking 
several parameters into consideration: the maximum number of 
threads per multiprocessor, the shared memory needs per 
thread block, and the register usage per thread. 
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Fig. 1.  Example of CUVLE basic inter-block mechanism for an input 

vector of 4 block-inputs and a grid of 2 blocks. The block 0 

processes the block-inputs 0 and 2 and writes the corresponding 

block-codes 0 and 2 in the output vector. The block 1 performs 

the same actions with the block-inputs 1 and 3. 

 
 
 
 
 
 

                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            

 
 

Fig. 2.  Example of CUVLE basic intra-block mechanism for NET = 

8. The block j processes the block-input i and writes the 

corresponding block-code i in the output vector. Each thread k 

of the block j encodes the thread-input k and writes the thread-

code k in the output vector.  

Input vector 

Output vector 

Block 0 Block 1 

Block-code i 

Block-input i 

Thread-input 0 Thread-input B - 1 

 Thread 0  Thread B - 1 

Thread-code 

0 

Thread-code 

B - 1 

Block j 

Input 

vector 

Output 

vector 



// Declaration of arrays in shared memory for VLET caching  

__shared__ uint s_VLET_val[ALPHABET_SIZE]; 

__shared__ uint s_VLET_len[ALPHABET_SIZE]; 

 

// Declaration of array in shared memory for storing the 

// bit-lengths of the thread-codes belonging to a block-code  

__shared__ uint s_lens[BLOCK_SIZE]; 

 

// VLET caching 

cacheVLETInSharedMemory(s_VLET_val, s_VLET_len, 

       h_VLET_val, h_VLET_len); 

 

// Get the index of the first block-input to be encoded 

uint blockinput_idx = blockIdx.x; 

 

// While there are block-inputs to be encoded... 

while (blockinput_idx < number_of_blockinputs){  

   // Encode the thread-input assigned to the thread in the 

   // current block-input 

   uint threadcode[4 × NET]; 

   uint threadcode_len; 

   encodeThreadInput(threadcode, threadcode_len, 

                     h_input, blockinput_idx, 

                     s_VLET_val, s_VLET_len); 

    

   // Calculate the bit-positions of the thread-codes belonging 

   // to the current block-code 

   s_lens[threadIdx.x] = threadcode_len; 

   uint threadcode_bitpos = calculateBitPosOfThreadCodes(s_lens); 

 

   // Write the thread-code to the output vector 

   writeThreadCode(h_output, threadcode_bitpos, 

  threadcode, threadcode_len); 

    

   // Get the index of the next block-input to be encoded 

   blockinput_idx += gridDim.x; 

} 

 

Fig. 3.  CUVLE algorithm. 

C. Thread-input reading and encoding 

A thread calls the function encodeThreadInput to encode a 
thread-input in its private memory. For each of the NET 
elements of a thread-input, a thread loads it from global 
memory and for each of its 4 bytes, from the most significant 
to the least: first, searches in the VLET the value and the bit-
length of the associated code; second, updates the array 
threadcode and the variable threadcode_len with the read 
values. The codes are concatenated in threadcode and the bit-
lengths accumulated in threadcode_len. 

The size of threadcode is 4 × NET because a thread-code is 

composed by the concatenation of 4 × NET codes and the 
maximal bit-length of a code assumed by CUVLE is 32 bits 
(the size of an unsigned integer). 

If NET > 1, the accesses of a warp for reading a thread-
input are not coalesced, as CUDA literature [7, 8] recommends 
for maximizing the performance. However, they satisfy the 
principle of spatial locality because consecutive threads of a 
warp read consecutive thread-inputs. Therefore, the transparent 
cache hierarchy of Fermi and Kepler ensures a good 
performance while reading the input vector. In Fermi 
architecture, CUVLE must utilize both L1 and L2 caches to 
achieve the best performance. L1 should be used because the 
accesses fulfill the principle of spatial locality and its line size 
(128 bytes) is larger than the one of L2 (32 bytes). In Kepler 
architecture, accesses to global memory are cached only in L2 
(L1 is reserved for local memory accesses) [6] but this memory 

is improved, as it offers up to 2x of the bandwidth per clock 
available in Fermi. 

D. Calculation of the bit-positions of thread-codes in the 

output vector 

The function calculateBitPosOfThreadCodes calculates the 
output bit-positions of the thread-codes that belong to a block-
code. It operates across all the threads of a block combining the 
efficient intra-block scan algorithm of S. Sengupta et al. [12] 
with the adjacent block synchronization mechanism proposed 
by S.Yan et al. [13]. 

The function utilizes an intermediate array I in global 
memory, with as many elements as number of block-inputs (or, 
equivalently, block-codes). This vector is used for storing the 
bit-positions of the block-codes in the output vector with the 
exception of the first block-code, whose bit-position is zero. 

The bit-position of a thread-code in the output vector (pos-
tc-out) is calculated using the following expression: 

pos-tc-out = pos-tc-bc + pos-bc-out 

where pos-tc-bc and pos-bc-out are the bit-positions of the 
thread-code in its block-code and of the block-code in the 
output vector, respectively.  

• The values of the parameter pos-tc-bc for the thread-
codes of a block-code are calculated applying the scan 
operation on the basis of their bit-lengths. 

• Given a block-input j, if it is the first (j = 0) pos-bc-out 
is zero. Otherwise, its value is read from I[j - 1]. 

Let us see how the values of I are written. At the beginning, 
all its elements are initialized to zero. When the bit-length of a 
block-code j is calculated (through the scan operation):  

• If j = 0, the bit-length is stored in I[0]. 

• If j > 0, a particular thread of the block: 

1. Reads continuously the element I[j - 1] until its 
value is nonzero. The readings are carried out 
using atomic operations to avoid getting old 
cached values. 

2. Adds the value read in the previous step to the 
bit-length of the block-code. 

3. Stores the value calculated in the previous step in 
I[j]. 

E. Writing the thread-codes in the output vector 

A thread calls the function writeThreadCode to write the 
corresponding thread-code in the output vector at the bit-
position calculated in the previous step. The number of 
elements of the output vector to update depends on the bit-
length and the bit-position of the thread-code. As the second to 
penultimate elements are exclusively written by the thread, the 
standard store operation is used for it. However, as the first and 
ultimate elements are generally edited by more than one thread, 
each one fits safely its specific bits using atomic OR 
operations. Note that all the elements of the output vector must 
be initialized to zero.  



As a thread-code is composed by a sequence of 4 × NET 
codes and the minimum bit-length of a code is 1 bit, if NET ≥ 
8, the minimum bit-length of a thread-code is ≥ 32 bits, the size 
of the elements of the output vector. This fact has the following 
implications:  

• The first element of the output vector updated by each 
thread is different. 

• Each element of the output vector is updated at most by 
two threads of the grid (the last bits of the first thread-
code and the first bits of the second thread-code).   

Assuming NET ≥ 8, let us analyze when position conflicts 
(i.e., two threads colliding while accessing the same memory 
location) may appear between two consecutive threads t1 and 
t2, whose thread-codes are tc1 and tc2, respectively, and the 
need for atomic operations:  

• The threads belong to the same warp. As a warp is a 
SIMD unit, it executes in lock-step, so it is not possible 
a collision because t1 and t2 do not write the second 
element of tc1 and tc2, respectively, until they have 
written the first element, which means that when t1 is 
going to write the last element of tc1, t2 has already 
written the first element of tc2 previously. 

• The threads belong to different warps. In this case, 
there may be collisions, as warps execute independently 
and in a non-predictable order. However, the 
probability of collision is low, given that warp 
schedulers typically alternate warps in a round-robin 
fashion.   

Taking into account our previous analysis let us see 
(assuming NET ≥ 8) how a thread can write its thread-code 
using only two atomic operations per warp and minimizing the 
number of OR operations (atomic or not): 

• First element of the output vector to update. If the 
thread is the first of a warp, it writes the corresponding 
bits performing an atomic OR operation with the value 
stored in the target position, preventing, in this way, 
collisions with other thread that updates the same 
element. Hereafter, we will call the second thread the 
colliding thread. Otherwise, it directly stores the 
corresponding value in the target position because the 
colliding thread (the immediately preceding) belongs to 
the same warp and so, as we have just seen, they cannot 
collide. For example, in Figure 2, thread 0 fits the bits 
of the first output element using an atomic OR 
operation. In contrast, threads 1 to 31 directly write the 
bits of their first target positions. 

• Second to penultimate elements. Their contents are 
directly stored, as they are exclusively updated by the 
thread. In Figure 2, threads 0 and B - 1 directly write 
the values of the second to fourth and of the second to 
third target elements, respectively. 

• Last element. If the thread is the last of a warp, it 
updates the target position performing an atomic OR 
operation for preventing collisions. Otherwise, it 
executes a non-atomic OR operation because the 

colliding thread (the immediately subsequent) belongs 
to the same warp and they cannot collide. In Figure 2, 
thread B - 1 fits the bits of the last output element using 
an atomic OR operation. In contrast, the 31 immediately 
preceding threads execute a non-atomic OR operation 
to fit the bits of their last target positions. 

In order to eliminate the warp divergences caused by the 
evaluation of conditions in the updating of the first and last 
target positions, CUVLE simplifies the writing of a thread-
code as follows: 

• First and last target positions: performing an atomic 
OR operation. 

• Second to penultimate target positions: directly storing 
their values. 

IV. EXPERIMENTAL EVALUATION 

We evaluated CUVLE and compared it to PAVLE and a 
CPU serial implementation, which will be referred to as CPU-
VLE in this section. The PAVLE and CPU-VLE 
implementations were obtained from the source code provided 
by A. Balevic [15]. CPU-VLE, as our approach, assumes a 
maximal code bit-length of 32 bits. 

Our test machine had a 2.67Ghz Intel Core i7 920 CPU and 
12 GB of RAM. The GPUs that we utilized were a GeForce 
GT 640 2GB GDDR5 (Kepler architecture with compute 
capability 3.5) and a GeForce GTX 550 Ti (Fermi architecture 
with compute capability 2.1). 

We used randomly-generated test files with values of 
entropy between 0 and 8 bits per symbol and sizes between 
0.25 and 256 MB. The variable-length codes were generated 
using the Huffman method for the construction of minimum 
redundancy codes [3]. 

Tables I and II show the minimum, maximum and average 
values of CUVLE speedup with respect to the other algorithms 
using the Kepler and Fermi GPUs, respectively. In the case of 
PAVLE, we distinguish between the kernel execution time and 
the total encoding time. The latter takes into account the extra 
processing of compaction required on the output vector after 
PAVLE kernel completion. As it can be seen, the speedups 
were very similar in both architectures.  

As expected, the best values of performance were obtained 
for NET >= 8, condition that guarantees the next points: 

• There are not intra-warp position conflicts. 

• The maximum degree of inter-warp position conflict is 
2. 

• The thread-codes can be written minimizing the number 
of OR operations.  

More precisely, the best results were obtained using NET = 
8 or NET = 16 for files with small sizes (less than or equal to 
1MB) and NET = 16 for the rest. Therefore, the value NET = 
16 always guarantees an efficient encoding. 

Experimental evaluation showed that CUVLE is more than 
two times faster than PAVLE. The main reasons are the next: 



TABLE I.  CUVLE SPEEDUP USING THE KEPLER CARD. 

Algorithm Minimum Maximum Average 

CPU-VLE 22.3 29.2 27.1 

PAVLE (kernel) 1.6 2.2 2.0 

PAVLE (total) 2.5 4.2 2.7 
 

TABLE II.  CUVLE SPEEDUP USING THE FERMI CARD. 

Algorithm Minimum Maximum Average 

CPU-VLE 20.3 23.6 21.8 

PAVLE (kernel) 1.7 1.9 1.8 

PAVLE (total) 2.0 3.9 2.5 
 

a) Contiguous writing of block-codes in global memory. 
PAVLE writes the block-codes in the output vector at the same 
positions of their corresponding block-inputs in the input 
vector. Consequently, the block-codes are not stored 
contiguously and, after completion of PAVLE, it is necessary 
the execution of a second algorithm to compact the content of 
the output vector using the bit-lengths of the block-codes, 
which are previously stored in global memory by PAVLE. 
CUVLE writes the block-codes in their correct positions in the 
output vector from the beginning, which avoids the necessity 
of running any compaction algorithm and, consequently, 
entails a great saving of time. 

b) Direct writing of block-codes in global memory. 
PAVLE, first, writes a block-code to a temporary buffer in 
shared memory and, then, copies the content of the buffer to 
the output vector. As our approach writes directly a block-code 
in global memory: 

• Saves the time to make additional operations of writing 
and reading in a buffer in shared memory, avoiding the 
corresponding data-dependent appearance of bank 
conflicts. 

• Saves the required space for the temporary buffer, 
increasing the occupancy, which is the ratio between 
the number of active warps within a streaming 
multiprocessor and the maximum number of active 
warps. 

• Benefits on the high performance of global atomic 
operations on modern GPGPUs architectures [6]. 

c) Persistent blocks. As CUVLE applies the persistent 
blocks strategy, the grid has many fewer blocks than that of 
PAVLE. So, the number of VLET copies from global to shared 
memory is much lower. 

V. CONCLUSIONS 

This work has presented CUVLE, a highly optimized 
approach to VLE on GPU. Our algorithm uses several 
optimization techniques that outperform the throughput of 
PAVLE, the unique parallel previous GPGPU implementation, 
to the best of our knowledge. CUVLE applies the persistent 
blocks strategy to carry out a very small number of VLET 
copies in shared memory. Our approach writes the codes in 
their correct positions from the beginning, which avoids the 
necessity of running any compaction algorithm. Moreover, the 
codes are written directly in global memory, as the 
performance of global atomic operations is high on modern 
GPGPUs architectures. Thus, the occupancy is increased by 
saving the reserved space for a write buffer in shared memory.  

The experimental evaluation showed that CUVLE is a good 
and suitable alternative for variable-length encoding on modern 
GPGPUs, as it is more than 20 and 2 times faster than the 
corresponding CPU serial implementation and PAVLE, 
respectively.  
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